Chapter 2

Sinusoidal steady state analysis

By
Dr. Ayman Yousef
AC Circuits Analysis
n The Node Voltage Method
n The Mesh Current Method
n Superposition of AC Sources
n Thevenin's Theorems
n Norton's Theorems

Nodal analysis

n The aim of nodal analysis is to determine the voltage at each node relative to the reference node (or ground).
n Once you have done this you can easily work out anything else you need.

Branches and Nodes

Branch: elements connected end-to-end, nothing coming off in between (in series)

A single branch

Not a single branch

Node: place where elements are joined-includes entire wire

Nodal analysis

Common symbols for indicating a reference node, (ground)

(a)

(b)

(c)

Steps of \mathcal{N} odal $\mathfrak{A n a l y s}$ is

1. Choose a reference (ground) node.
2. Assign node voltages to the other nodes.
3. Apply KCL to each node other than the reference node; express currents in terms of node voltages.
4. Solve the resulting system of linear equations for the nodal voltages.
5. Reference Node

The reference node is called the ground node where $V=0$
2. Node Voltages

V_{1}, V_{2}, and V_{3} are unknowns for which we solve using KCL
2. Node Voltages

$$
I=\frac{V_{1}-V_{2}}{500 \Omega}
$$

$$
I=\frac{V_{1}}{500 \Omega}
$$

3. KCL at $\mathfrak{N o d e} 1$

$$
I_{1}=\frac{V_{1}-V_{2}}{500 \Omega}+\frac{V_{1}}{500 \Omega}
$$

3. KCL at $\mathfrak{N o d e} 2$

$\frac{V_{2}-V_{1}}{500 \Omega}+\frac{V_{2}}{1 \mathrm{k} \Omega}+\frac{V_{2}-V_{3}}{500 \Omega}=0$

Electric Circuits

$$
\text { 3. KCL at Node } 3
$$

$$
\frac{V_{3}-V_{2}}{500 \Omega}+\frac{V_{3}}{500 \Omega}=I_{2}
$$

4. Summing Circuit Solution

Solution: $V=167 I_{1}+167 I_{2}$

Ex. 1: Find v_{1} and v_{2} using

nodal analysis

Solution

$$
\begin{array}{lll}
\omega=2 \mathrm{rad} / \mathrm{s} & & \\
\mathrm{~L}=2 \mathrm{H} & \| \square & X_{\mathrm{L}}=\omega \mathrm{L}=4 \Omega \\
\mathrm{C}=0.2 \mathrm{~F} & \| & X_{\mathrm{C}}=1 / \omega \mathrm{C}=2.5 \Omega
\end{array}
$$

Hence, the circuit in the frequency domain is as shown below.

Electric Circuits

At node 1

$$
\begin{aligned}
& 10=\frac{V_{1}}{2}+\frac{V_{1}-V_{2}}{-j 2.5} \\
& 100=(5+j 4) \mathbf{V},-j 4 V_{2}
\end{aligned}
$$

Eq. (1)
At node 2

$$
\begin{aligned}
& \frac{V_{2}}{j 4}=\frac{V_{1}-V_{2}}{-j 2.5}+\frac{3 V_{x}-V_{2}}{4} \quad \text { where } V_{x}=V_{1} \\
& -\mathrm{j} 2.5 \mathbf{V}_{2}=j 4\left(V_{1}-V_{2}\right)+2.5\left(3 V_{1}-V_{2}\right) \\
& 0=-(7.5+j 4) V_{1}+(2.5+j 1.5) V_{2} \longrightarrow \text { Eq. (2) }
\end{aligned}
$$

Put (1) and (2) in matrix form.

$$
\Delta-\left[\begin{array}{cc}
5+\mathrm{j} 4 & -\mathrm{j} 4 \\
-(7.5+\mathrm{j} 4) & 2.5+\mathrm{j} 1.5
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]=\left[\begin{array}{c}
100 \\
0
\end{array}\right]
$$

where $\Delta=(5+\mathrm{j} 4)(2.5+\mathrm{j} .15)-(-\mathrm{j} 4)(-(7.5+\mathrm{j} 4)=22.5-\mathrm{j} 12.5$

$$
\Delta=25.74 \angle-29.05^{\circ}
$$

$$
\begin{aligned}
& \Delta_{1}=\left[\begin{array}{cc}
100 & -\mathrm{j} 4 \\
0 & 2.5+\mathrm{j} 1.5
\end{array}\right]=250+\mathrm{j} 150=291.55 \underline{30.96^{\circ}} \\
& \Delta_{2}=\left[\begin{array}{cc}
5+\mathrm{j} 4 & 100 \\
-(7.5+\mathrm{j} 4) & 0
\end{array}\right]=750+\mathrm{j} 400=850 \underline{28.0}^{\circ} \\
& \mathrm{V}_{1}=\frac{\Delta_{1}}{\Delta}=\frac{291.55 \angle 30.96^{\circ}}{25.74 \angle-29.05^{\circ}}=11.32 \angle 60.01^{\circ} \mathrm{V} \\
& \mathrm{~V}_{2}=\frac{\Delta_{2}}{\Delta}=\frac{850 \angle 28.07^{\circ}}{25.74 \angle-29.05^{\circ}}=33.02 \angle 57.12^{\circ} \mathrm{V}
\end{aligned}
$$

In the time domain,

$$
\begin{aligned}
& v_{1}(\mathrm{t})=11.32 \sin \left(2 \mathrm{t}+60.01^{\circ}\right) \mathrm{V} \\
& v_{2}(\mathrm{t})=33.02 \sin \left(2 \mathrm{t}+57.12^{\circ}\right) \mathrm{V}
\end{aligned}
$$

Mest analysis

n Mesh analysis: another procedure for analyzing circuits, applicable to planar circuit.
n A Mesh is a loop which does not contain any other loops within it
Steps to Determine Mesf Currents

1- Assign mesh currents $i_{1}, i_{2}, . ., i_{n}$ to the n meshes.
2- Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
3- Solve the resulting n simultaneous equations to get the mesh currents.

1. Assign mesficurrents

A circuit with two meshes.

2. Apply KVL to each of the meshes

n For mesh 1, (abed)

$$
\begin{gathered}
-V_{1}+R_{1} i_{1}+R_{3}\left(i_{1}-i_{2}\right)=0 \\
\left(R_{1}+R_{3}\right) i_{1}-R_{3} i_{2}=V_{1}
\end{gathered}
$$

n For mesh 2, (bede)

$$
\begin{aligned}
& R_{2} i_{2}+V_{2}+R_{3}\left(i_{2}-i_{1}\right)=0 \\
& -R_{3} i_{1}+\left(R_{2}+R_{3}\right) i_{2}=-V_{2}
\end{aligned}
$$

3. Solve the resulting equations

n Solve for the mesh currents in

$$
\begin{aligned}
&\left(R_{1}+R_{3}\right) i_{1}-R_{3} i_{2}=V_{1} \\
&-R_{3} i_{1}+\left(R_{2}+R_{3}\right) i_{2}=-V_{2} \\
& \hline
\end{aligned}
$$ matrix form.

$$
\left[\begin{array}{cc}
R_{1}+R_{3} & -R_{3} \\
-R_{3} & R_{2}+R_{3}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{c}
V_{1} \\
-V_{2}
\end{array}\right]
$$

n Use i for a mesh current and I for a branch current.

$$
\begin{gathered}
I_{1}=i_{1}, I_{2}=i_{2} \\
I_{3}=i_{1}-i_{2}
\end{gathered}
$$

Ex. 2: Determine I_{0} using Mesh analysis

Solution

Applying KVL to mesh 1

$$
(8+j 10-j 2) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{2}-j 10 \mathbf{I}_{3}=0 \quad \longrightarrow \text { Eq. (1) }
$$

For mesh 2

$$
(4-j 2-j 2) \mathrm{I}_{2}-(-j 2) \mathrm{I}_{1}-(-j 2) \mathrm{I}_{3}+20 \angle 90^{\circ}=0 \longrightarrow \text { Eq. (2) }
$$

For mesh 3, $\mathrm{I}_{3}=5 \longrightarrow$ Eq. (3)
Substituting from Eq.(3) in Eq.(1) and Eq.(2)

$$
\begin{aligned}
& (8+j 8) \mathrm{I}_{1}+j 2 \mathrm{I}_{2}=j 50 \\
& j 2 \mathrm{I}_{1}+(4-j 4) \mathrm{I}_{2}=-j 20-j 10=-j 30
\end{aligned}
$$

Putting mesh currents in matrix form.

$$
\begin{aligned}
& (8+j 8) \mathrm{I}_{1}+j 2 \mathrm{I}_{2}=j 50 \\
& j 2 \mathrm{I}_{1}+(4-j 4) \mathrm{I}_{2}=-j 30
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
8+j 8 & j 2 \\
j 2 & 4-j 4
\end{array}\right]\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathrm{I}_{2}
\end{array}\right]=\left[\begin{array}{c}
j 50 \\
-j 30
\end{array}\right]} \\
& \Delta=\left[\begin{array}{cc}
8+j 8 & j 2 \\
j 2 & 4-j 4
\end{array}\right]=(8+\mathrm{j} 8)(4-\mathrm{j} 4)-(\mathrm{j} 2 \times \mathrm{j} 2)=68 \\
& \Delta_{2}=\left[\begin{array}{cc}
8+j 8 & j 50 \\
j 2 & -j 30
\end{array}\right]=-\mathrm{j} 30(8+\mathrm{j} 8)-(\mathrm{j} 2 \times \mathrm{j} 50)=416.17 \angle-35.22^{\circ} \\
& \mathbf{I}_{2}=\frac{\Delta_{2}}{\Delta}=\frac{416.17 /-35.22^{\circ}}{68}=6.12 \angle-35.22^{\circ} \mathrm{A} \\
& \quad \mathbf{I}_{0}=-\mathbf{I}_{2}=6.12 \angle 144.78^{\circ} \mathrm{A}
\end{aligned}
$$

Superposition Principle

The Superposition theorem, Enables us to find the response of the circuit to each source acting alone, and then add them up to find the response of the circuit to all sources acting together.

The Superposition principle, states that the voltage across (or the current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

$$
\begin{gathered}
\text { Steps of Appling } \\
\text { Superposition Analysis }
\end{gathered}
$$

1- Turn off all independent sources except one.
2- Find the output (voltage or current) due to the active source.
3- Repeat step 1and step 2 for each of the other sources.
4- Find the total output by adding algebraically all of the results found in steps $1,2 \& 3$ above.

Turning sources off

Voltage source

Turn off the voltage source (replace it by sfort circuits).

Current source

Ex. 3: Determine I_{0} using

 Superposition theorem.
Solution

First: \mathcal{T} urn off the current source (replace it by open circuit) resulting Fig. (a) in order to calculate \mathbf{I}_{0}^{\prime}

$$
\begin{aligned}
\mathbf{Z} & =(-j 2) \|(8+j 10)=0.25-j 2.25 \\
Z_{T} & =(4-j 2)+Z \\
& =(4-j 2)+(0.25-j 2.25) \\
& =4.25-j 4.25 \Omega \\
I_{o}^{\prime} & =\frac{j 20}{Z_{T}}=\frac{j 20}{4.25-j 4.25} \\
& \mathbf{I}_{0}^{\prime}=-2.353+j 2.353 \mathrm{~A}
\end{aligned}
$$

Second: Turn off the voltage source (replace it by sfort circuits) resulting Fig. (b) in order to calculate $\mathbf{I}_{0}^{\prime \prime}$

To get \mathbf{I}_{0}, Applying KVL to mesh 1

$$
(8+j 8) I_{1}-j 10 I_{3}+j 2 I_{2}=0
$$

For mesh 2

$$
(4-j 4) I_{2}+j 2 I_{1}+j 2 I_{3}=0
$$

Thévenin's theorem

Thévenin's theorem, as stated for sinusoidal AC circuits, is changed only to include the term impedance instead of resistance.

Thévenin's theorem, for linear electrical networks states that any combination of voltage sources, current sources, and Impedances with two terminals is electrically equivalent to a single voltage source V_{th} in series with a single series Impedance Z_{th}.

Steps of Appling Thévenin's theorem

1- Identify and remove the load Impedance Z_{L} and Assign the load terminals by a-b
2- Look in the load terminals and calculate $\mathrm{V}_{\mathrm{Th}}\left(\mathrm{V}_{\mathrm{oc}}\right)$
3 - Remove all sources by replacing:

- voltage sources with a short circuit
- current sources with an open circuit

4- Look in the load terminals and calculate Z_{Th}
5- Create a series circuit consisting of $\mathrm{V}_{\mathrm{Th}}, \mathrm{Z}_{\mathrm{Th}}$, and the load Z_{L}
6- Calculate the load current I_{L} or voltage V_{L} as desired

Thévenin's theorem

$n \quad \mathbf{V}_{\mathrm{Th}}$ is the open circuit voltage at the terminals,
$n \quad \mathbf{Z}_{\mathrm{Th}}$ is the input or equivalent resistance at the terminals when the independent sources are turned off.

Determining $\mathcal{E}_{\mathcal{T} \mathcal{H}}$

$\mathbf{V}_{\text {th }}=$ open circuit voltage

$\mathcal{V}_{\text {Th }}$ is the Opencircuit
voltage between the
terminals $a-b$.
n Remove the load (open-circuit) and measure the resulting voltage.

Determining $Z_{\text {TH }}$

n With the load disconnected, turn off all independent sources.
n Voltage sources -0 V is equivalent to a short-circuit.
n Current sources - 0 A is equivalent to an open-circuit.

Applying Thévenin equivalent

n Once $\mathbf{V}_{\mathbf{T h}}$ and $\mathbf{Z}_{\mathbf{T h}}$ have been found, the original circuit is replaced by its equivalent and solving for $\mathbf{I}_{\mathbf{L}}$ and $\mathbf{V}_{\mathbf{L}}$ becomes very simple.

$$
\mathbf{V}_{\mathbf{L}}=\frac{\mathbf{Z}_{L}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}} \mathbf{V}_{T h}
$$

$$
\mathbf{I}_{L}=\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}
$$

Ex. 5: Using Thevenin equivalent get the current in the 10Ω resistor

Solution

1- Assign the load terminals by a-b

2- Remove the load Impedance Z_{L} and Remove all sources

3- calculate $\mathbf{Z}_{T h}$

$$
Z_{\text {Th }}=\frac{5(3+j 4)}{8+j 4}+(4-j 13)=6.5-j 11.75 \Omega
$$

4- Open the load terminals and calculate $\mathbf{V}_{\mathrm{Th}}\left(\mathbf{V}_{\mathrm{oc}}\right)$

$$
V_{T h}=V_{a b}=\frac{20 \angle-90^{\circ}}{5+3+j 4} x(3+j 4)=11.18 \angle-63.5^{\circ} \mathrm{V}
$$

5- The equivalent Thevenin circuit as shown:

Electric Circuits Dr. Ayman Yousef

$$
\mathbf{I}_{L}=\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}
$$

$$
\begin{aligned}
\boldsymbol{I}_{10 \Omega} & =\frac{\mathbf{1 1 . 1 8} \angle-\mathbf{6 3 . 5}}{(6.5-\boldsymbol{5} 11.75)+\mathbf{1 0}} \\
& =\frac{11.18 \angle-63.5^{\circ}}{20.256 \angle-35.4^{\circ}}
\end{aligned}
$$

$$
\boldsymbol{I}_{10 \Omega}=0.5519 \angle-28.1^{\circ} \mathrm{A}
$$

\mathcal{N} orton's theorem

Norton's theorem, as stated for sinusoidal AC circuits, is changed only to include the term impedance instead of resistance.

Norton's theorem, for linear electrical networks states that any combination of voltage sources, current sources, and Impedances with two terminals is electrically equivalent to a single current source I_{N} in parallel with a single series Impedance Z_{N}.

$$
\begin{aligned}
& \text { Steps of Appling } \\
& \mathcal{N} \text { orton's theorem }
\end{aligned}
$$

1- Identify and remove the load Impedance Z_{L} and Assign the load terminals a-b
2- Short the load terminals and calculate $\mathrm{I}_{\mathrm{N}}\left(\mathrm{I}_{\mathrm{SC}}\right)$
3- Remove all sources by replacing:

- voltage sources with a short circuit
- current sources with an open circuit

4- Look in the load terminals and calculate Z_{N}
5- Create a parallel circuit consisting of $\mathrm{I}_{\mathrm{N}}, \mathrm{Z}_{\mathrm{N}}$, and the load Z_{L}
6- Calculate the load current I_{L} or voltage V_{L} as desired

Norton's theorem

$\mathrm{n} \mathbf{I}_{\mathrm{N}}$ is the short circuit current in the terminals a-b
$n Z_{V}$ is the input or equivalent Impedance at the terminals a-b when the sources are turned off.

$$
\mathcal{D e t e r m i n i n g} I_{\mathfrak{N}}
$$

n Short the load terminals and measure the resulting current.

Determining $Z_{\mathcal{N}}$

n With the load disconnected, turn off all independent sources.
n Voltage sources -0 V is equivalent to a short-circuit.
n Current sources - 0 A is equivalent to an open-circuit.

Applying \mathcal{N} (orton equivalent

n Once $\mathbf{I}_{\mathbf{N}}$ and $\mathbf{Z}_{\mathbf{N}}$ have been found, the original circuit is replaced by its equivalent and solving for $\mathbf{I}_{\mathbf{L}}$ and $\mathbf{V}_{\mathbf{L}}$ becomes trivial.

$$
\begin{gathered}
\mathbf{I}_{\mathrm{L}}=\frac{\mathbf{Z}_{\mathbf{N}}}{\mathbf{Z}_{\mathbf{N}}+\mathbf{Z}_{L}} \mathbf{I}_{\mathbf{N}} \\
\mathbf{V}_{\mathbf{L}}=\mathbf{I}_{\mathrm{L}} \mathbf{Z}_{\mathrm{N}}
\end{gathered}
$$

Ex. 5: Apply Norton theorem to get the current $\mathrm{I}_{\text {}}$

Solution

1- Assign the load terminals by a-b

3- Z_{N} can be found easily, $\mathrm{Z}_{\mathrm{N}}=5 \Omega$

2- Remove the load Impedance Z_{L} and Remove all sources Ω

4- Short the load terminals and calculate $\mathrm{I}_{\mathrm{N}}\left(\mathrm{I}_{\mathrm{SC}}\right)$ using mesh analysis

Applying KVL for mesh 1

Eq. (1)
Applying KVL for mesh2
$(13-j 2) \mathbf{I}_{2}-(10+j 4) \mathbf{I}_{3}-(18+j 2) \mathbf{I}_{1}=0 \quad \| \longmapsto \quad$ Eq. (2)
Applying KCL at node a

$$
\mathbf{I}_{3}=\mathbf{I}_{2}+3 \quad \| \longmapsto \quad \text { Eq. (3) }
$$

Substituting from Eq. 3 in Eq. 1 and Eq. 2 and solve

$$
I_{2}=\mathrm{j} 8
$$

Eq. 1and Eq. 2 to get I_{2}

$$
\mathbf{I}_{3}=3+j 8 \xrightarrow{\square} \mathrm{I}_{\mathrm{N}}=\mathrm{I}_{3}=3+\mathrm{j} 8=8.54\left\llcorner 69.44^{\circ} \mathrm{A}\right.
$$

5- The equivalent Norton circuit as shown:

6- The required current $I_{o}=I_{L}$

$$
\mathbf{I}_{\mathrm{L}}=\frac{\mathbf{Z}_{\mathrm{N}}}{\mathbf{Z}_{\mathrm{N}}+\mathbf{Z}_{L}} \mathbf{I}_{\mathrm{N}}
$$

$$
I_{o}=\frac{5}{5+20+j 15} x 8.54\left\llcorner 69.44^{\circ}=1.465 \angle 38.48^{\circ} \mathrm{A}\right.
$$

